non-abelian, soluble, monomial
Aliases: C32⋊D16, C4.1S3≀C2, (C3×C6).1D8, (C3×C12).5D4, C32⋊2D8⋊1C2, C2.3(C32⋊D8), C32⋊2C16⋊1C2, C32⋊4C8.1C22, SmallGroup(288,382)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C32⋊4C8 — C32⋊D16 |
C1 — C32 — C3×C6 — C3×C12 — C32⋊4C8 — C32⋊2D8 — C32⋊D16 |
C32 — C3×C6 — C3×C12 — C32⋊4C8 — C32⋊D16 |
Generators and relations for C32⋊D16
G = < a,b,c,d | a3=b3=c16=d2=1, ab=ba, cac-1=b, dad=cbc-1=a-1, bd=db, dcd=c-1 >
Character table of C32⋊D16
class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 12A | 12B | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 24 | 24 | 4 | 4 | 2 | 4 | 4 | 24 | 24 | 24 | 24 | 18 | 18 | 8 | 8 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | 0 | 0 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ9 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | 0 | 0 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | 0 | 0 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | 0 | 0 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ12 | 4 | 4 | 0 | -2 | 1 | -2 | 4 | 1 | -2 | 0 | 1 | 1 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ13 | 4 | 4 | 2 | 0 | -2 | 1 | 4 | -2 | 1 | -1 | 0 | 0 | -1 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ14 | 4 | 4 | -2 | 0 | -2 | 1 | 4 | -2 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | 4 | 0 | 2 | 1 | -2 | 4 | 1 | -2 | 0 | -1 | -1 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 1 | -2 | 0 | √-3 | -√-3 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ17 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | -2 | 1 | -√-3 | 0 | 0 | √-3 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ18 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 1 | -2 | 0 | -√-3 | √-3 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ19 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | -2 | 1 | √-3 | 0 | 0 | -√-3 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ20 | 8 | -8 | 0 | 0 | 2 | -4 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful, Schur index 2 |
ρ21 | 8 | -8 | 0 | 0 | -4 | 2 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful, Schur index 2 |
(1 21 48)(3 34 23)(5 25 36)(7 38 27)(9 29 40)(11 42 31)(13 17 44)(15 46 19)
(2 33 22)(4 24 35)(6 37 26)(8 28 39)(10 41 30)(12 32 43)(14 45 18)(16 20 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 36)(18 35)(19 34)(20 33)(21 48)(22 47)(23 46)(24 45)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)
G:=sub<Sym(48)| (1,21,48)(3,34,23)(5,25,36)(7,38,27)(9,29,40)(11,42,31)(13,17,44)(15,46,19), (2,33,22)(4,24,35)(6,37,26)(8,28,39)(10,41,30)(12,32,43)(14,45,18)(16,20,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,36)(18,35)(19,34)(20,33)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)>;
G:=Group( (1,21,48)(3,34,23)(5,25,36)(7,38,27)(9,29,40)(11,42,31)(13,17,44)(15,46,19), (2,33,22)(4,24,35)(6,37,26)(8,28,39)(10,41,30)(12,32,43)(14,45,18)(16,20,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,36)(18,35)(19,34)(20,33)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37) );
G=PermutationGroup([[(1,21,48),(3,34,23),(5,25,36),(7,38,27),(9,29,40),(11,42,31),(13,17,44),(15,46,19)], [(2,33,22),(4,24,35),(6,37,26),(8,28,39),(10,41,30),(12,32,43),(14,45,18),(16,20,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,36),(18,35),(19,34),(20,33),(21,48),(22,47),(23,46),(24,45),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37)]])
Matrix representation of C32⋊D16 ►in GL6(𝔽97)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 96 | 1 | 0 | 0 |
0 | 0 | 96 | 0 | 0 | 0 |
0 | 0 | 73 | 0 | 1 | 0 |
0 | 0 | 73 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 24 | 24 | 96 | 96 |
95 | 71 | 0 | 0 | 0 | 0 |
26 | 95 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 96 |
0 | 0 | 73 | 73 | 2 | 1 |
0 | 0 | 34 | 34 | 24 | 0 |
0 | 0 | 34 | 35 | 24 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 96 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 96 | 0 |
0 | 0 | 16 | 16 | 0 | 96 |
G:=sub<GL(6,GF(97))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,96,73,73,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,24,0,0,0,1,0,24,0,0,0,0,0,96,0,0,0,0,1,96],[95,26,0,0,0,0,71,95,0,0,0,0,0,0,0,73,34,34,0,0,0,73,34,35,0,0,1,2,24,24,0,0,96,1,0,0],[1,0,0,0,0,0,0,96,0,0,0,0,0,0,0,1,16,16,0,0,1,0,16,16,0,0,0,0,96,0,0,0,0,0,0,96] >;
C32⋊D16 in GAP, Magma, Sage, TeX
C_3^2\rtimes D_{16}
% in TeX
G:=Group("C3^2:D16");
// GroupNames label
G:=SmallGroup(288,382);
// by ID
G=gap.SmallGroup(288,382);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,254,135,142,675,346,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^16=d^2=1,a*b=b*a,c*a*c^-1=b,d*a*d=c*b*c^-1=a^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊D16 in TeX
Character table of C32⋊D16 in TeX